
EC8681 Microprocessor and Microcontroller Laboratory

1

Department of Computer Science Engineering

2017 Regulation

EC8681 Microprocessor and Microcontroller

Laboratory Manual
(Anna University Regulation 2017)

St, Anne’s College of Engineering and Technology
Affiliated to Anna University and Approved by AICTE, New Delhi

Name
Register Number

Lab Name/Code

Semester/Year

EC8681 Microprocessor and Microcontroller Laboratory

2

DEPARTMENT OF ELECTRONICS AND

COMMUNICATION ENGINEERING

BONAFIDE CERTIFICATE

This is to Certified that bonafide record of work done by Mr./Ms./Mrs.

 in the EC8681 Microprocessor and Microcontroller

Laboratory for the course of Electronics and Communication Engineering during VIth

Semester of academic year 2019:20.

STAFF IN-CHARGE HOD

Register No.:

This record is submitted for VIth semester Electronics and Communication

Engineering practical examination of Anna University, Chennai held on .

INTERNAL EXAMINER EXTERNAL

EXAMINER

EC8681 Microprocessor and Microcontroller Laboratory

3

INDEX

S.No Date Name of the Experiment Page

No.

Marks Initial of

Faculty

DESIGN AND TEST EXPERIMENTS

Average:

EC8681 Microprocessor and Microcontroller Laboratory

4

Date :

Ex.No.: 1

ADDITION AND SUBTRACTION OF TWO 16 BIT NUMBERS USING 8086

AIM:

To add and subtract two 16-Bit numbers stored at consecutive memory locations.

APPARATUS REQUIRED:

8086 kit

ALGORITHM: (16 bit addition)
1. Start the program.

2. Load the first data in AX register.

3. Load the second data in BX register.

4. Clear the CL registers for carry.

5. Add the two data and get the sum in AX REGISTER.

6. Store the sum in memory location.

7. Check for carry. If carry flag is set then go to next step, otherwise go to step8

8. Increment the carry in memory.

9. Store the carry in memory.

10. Stop the program.

PROGRAM

Address Label Opcode Mnemonics Operand Comments

1000 8B 06 00 20 MOV AX,[2000] Load the first data

1004 8B 1E 02 20 MOV BX,[2002] Load the second data

1008

C6 C1 00 MOV CL,00
Clear the CL register for

carry

100B

01 D8 ADD AX,BX
Add two number sum ill

be AX

100D

73 02 JNC # (1011)
Check the status of carry

flag

100F

FE C1 INC CL
If carry flag is set,

increment CL

1011 # 89 06 04 20 MOV [2004],AX Store the sum result

1015 88 0E 06 20 MOV [2006],CL Store the carry

1019 F4 HLT - Stop the program

EC8681 Microprocessor and Microcontroller Laboratory

5

OBSERVATION:

ADDITION

Input Output

Address Data Address Data

2000 2004

2001 2005

2002 2006

2003

OBSERVATION:

SUBTRACTION

Input Output

Address Data Address Data

2000 2004

2001 2005

2002 2006

2003

EC8681 Microprocessor and Microcontroller Laboratory

6

ALGORITHM: (16 bit Subtraction)

1. Start the program.

2. Set SI register as pointer for data.

3. Get the minuend AX register.

4. Get the subtrahend in BX register.

5. Clear CL register to account for sign.

6. Subtract the content of BX from AX, the difference will be in AX.]

7. Check for carry, if carry flag is set then go to next step, otherwise go to step 9.

8. Increment CL register by 1.

9. Take 2’s complement of the difference in AX register.

10. Store the magnitude of the difference in memory.

11. Store the sign bit in memory.

12. Stop the program.

SUBTRACTION

Address Label Opcode Mnemonics Operand Comments

1000 C7 C6 00 20 MOV SI,2000 Initialize the SI value

1004

8B 04

MOV AX,[SI]
First input value move

to AX

1006

8B 5C 02

MOV BX,[SI+2]
Second value move to

bx

1009 29 D8 SUB AX,BX Sub AX and BX

100B 73 08 JNC # (1015) Check the condition

100D FE C1 INC CL Increment CL value

100F F7 D0 NOT AX Ones complements

1011 81 C0 01 00 ADD AX,0001 Twos complements

1015 # 89 44 04 MOV [SI+4],AX Store the result

1018 88 4C 06 MOV [SI+6],CL Store the carry value

101B F4 HLT - stop

EC8681 Microprocessor and Microcontroller Laboratory

7

RESULT :

EC8681 Microprocessor and Microcontroller Laboratory

8

Date :

Ex.No.:

MULTIPLICATION AND DIVISION OF TWO 16 BIT NUMBERS USING 8086

AIM:

To write an assembly language program for the multiplication and division of two 16 bit numbers

using 8086 microprocessor kit

APPARATUS REQUIRED:

8086 kit

ALGORITHM: (16 BIT MULTIPLICATION)

1. Load the address of data in SI register.

2. Get the first data in AX register.

3. Get the second data in BX register.

4. Multiply the content of AX & BX.

5. The product will be in AX & DX

6. Save the product (AX & BX) in memory.

7. Stop the program.

PROGRAM:

MULTIPLICATION

Address Opcode Mnemonics Operand Comments

1000 C7 C6 00 11 MOV SI,1100 Set SI as a pointer for data

1004 8B 04 MOV AX,[SI] Get the first data in AX register

1006 8B 5C 02 MOV BX,[SI+2] Get the second data in BX

1009 F7 E3 MUL BX Multiply AX and BX

100B 89 44 04 MOV [SI+4],AX The product will be in AX and DX

register

100E 89 54 06 MOV [SI+6],DX Save the lower, upper 16 bits of the

product in memory

1011 F4 HLT - Stop

EC8681 Microprocessor and Microcontroller Laboratory

9

OBSERVATION:

MULTIPLICATION

Input Output

Address Data Address Data

1100 1104

1101 1105

1102 1106

1103 1107

OBSERVATION:

DIVISION

Input Output

Address Data Address Data

1100 1104

1101 1105

1102 1106

1103 1107

EC8681 Microprocessor and Microcontroller Laboratory

10

ALGORITHM: (16 BIT DIVISION)

1. Load the address of data in SI register.

2. Get the dividend in AX register.

3. Get the divisor in BX register.

4. Divide the two numbers.

5. Store the result in memory.

6. Stop the program

PROGRAM

DIVISION

Address Opcode Mnemonics Operand Comments

1000 8B 06 00 11 MOV AX,[1100] Get the first data in AX.

1004 8B 1E 02 11 MOV BX,[1102] Get the second data in BX

1008 F7 F3 DIV BX Divide AX by BX.

100A 89 06 04 11

MOV

[1104],AX

The Quotient stored in

3000.

100E 89 16 06 11

MOV [1106],DX
The Remainder stored in

3002

1012 F4 HLT - Stop

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

11

Date :

Ex.No.:

LOGICAL OPERATION USING 8086

AIM:

To write an assembly language program for one’s complement and AND operation using 8086

microprocessor kit.

APPARATUS REQUIRED:

8086 kit

ALGORITHM:

1. Start the program.

2. Move the data to accumulator.

3. Give the instruction for ONES complement and AND operation.

4. Store the result in respective address.

5. Stop the program.

PROGRAM

 ONES COMPLEMENT

Address Label Opcode Mnemonics Operand Comments

1000

C7,C0,34,12 MOV AX,1234 Move 1234 to accumulator

1004

F7,D0 NOT AX Ones complement of AX

1006

89,06,00,14 MOV [1400],AX
Move AX to address of

1400

100A

F4 HLT - Stop

EC8681 Microprocessor and Microcontroller Laboratory

12

OBSERVATION:

ONES COMPLEMENT

INPUT OUTPUT

DATA ADDRESS DATA

 1400

1401

AND OPERATION

INPUT OUTPUT

ADDRESS DATA ADDRESS DATA

1200 1400

1201 1401

EC8681 Microprocessor and Microcontroller Laboratory

13

AND OPERATION

Address Label Opcode Mnemonics Operand Comments

1000

8B,06,00,12 MOV AX,[1200]
Move the content of 1200 to

accumulator

1004

81,E0,0F,0F AND AX,0F0F And 0F0F with AX

1008

89,06,00,14 MOV [1400],AX Move AX to address of 1400

100C

F4 HLT
-

Stop

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

14

Date :

Ex.No.: 2

Block Transfer without Overlap

AIM :

To write an Assembly Language Program (ALP) for moving a data block without overlap using 8086.

APPARATUS REQUIRED:

8086 kit

PROGRAM:

Address Label Opcode Mnemonics Operand Comments

1000 C7,C6,00,20 MOV SI,2000 Load Source Address in SI

1004 C7, C7,00,21 MOV DI,2100 Load Destination address in DI

1008 C7,C1,00,FF
MOV CX,00FF

Load number of bytes

transferred to CX reg.

100C FC CLD - Clear Direction Flag

100D L1 A4

MOVSB

-

Move a block of string byte

from the source to the

destination

100E E2,FD
LOOP L1 (100D)

Facilitate auto incrementing of
the index register

1010 F4 HLT Stop

EC8681 Microprocessor and Microcontroller Laboratory

15

OBSERVATION

Memory Address Data

Input [2000] to [20FE]

Output [2100] to [21FE]

EC8681 Microprocessor and Microcontroller Laboratory

16

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

17

Date :

Ex.No.: 4

AIM:

STRING OPERATIONS

To perform string manipulation operations using 8086 string primitive.

APPARATUS REQUIRED:

8086 kit

THEORY:

The 8086 instruction set includes called the string primitives. Each string primitive instruction

performs a sequence of operations normally handled by an instruction loop. The string primitive

instruction performs an operation specified by the primitive, then increments or decrements the pointer

registers involved in the operation. On each iteration the affected pointer registers can be either

incremented or decremented by 1 or 2.

Pointer registers will be incremented if the value of the Direction Flag in the Flags Register is

0; affected pointer will be decremented if the value of the Direction Flag is 1. The affected pointer

registers will be incremented or decremented by 1 if the low-order bit of the string primitive operation

code is 0. If the low-order bit of the string primitive operation code is 1,the affected pointer registers

will be incremented or decremented by 2.

There are five primitives;

MOV - Move 8 or 16 bit data in memory

LODS - Load 8 or 16 bits of data from memory into AL or AX register

STOS - Store the AL (8-bit operation) or AX (16-bit operation) register into memory

SCAS - Compare the AL (8-bit operation) or AX (16-bit operation) register with memory

CMPS - Compare two strings of memory locations.

Use of index registers and string primitives along with direction flag status enables efficient

array and string manipulation as shall be evident from the following examples.

Since the 8086 includes the string primitives which require initialization of the index register

the SI and DI registers are initialized to start of the source and start of the destination array respectively.

The direction flag is cleared to facilitate auto-incrementing of the index registers. The CX register is

used to perform the operation repeatedly. The string primitive is used in MOVS. In the case of MOVE

operation, the status of the direction flag is however immaterial.

EC8681 Microprocessor and Microcontroller Laboratory

18

PROGRAM1:

Input [2000] to [20FE]

Output [2100] to [21FE]

PROGRAM 2:

Input [AL]

Output [2000]

EC8681 Microprocessor and Microcontroller Laboratory

19

EXAMPLE-1:

The data for the source array has to be initially entered. Hence let us fill the source locations starting

from 2000 using the FILL command in the kit. Fill locations from 2000 to 20FF with data XX.

PROGRAM-1 :

Address Label Opcode Mnemonic Operand Comments

1000 C7,C6,00,20
MOV SI,2000

Load Source Address in

SI

1004 C7, C7,00,21
MOV DI,2100

Load Destination address
in DI

1008 C7,C1,00,FF
MOV CX,00FF

Load number of bytes

transferred to CX reg.

100C FC CLD - Clear Direction Flag

100D L1 A4

MOVSB

-
Move a block of string

byte from the source to
the destination

100E

E2,FD

LOOP

L1 (100D)
Facilitate auto

incrementing of the index
register

1010 F4 HLT - Stop

EXAMPLE-2:

This program uses the string primitive STOS. The function of this is that it will store the byte in AL

or the word in AX depending upon the operand size from the location pointed to by the destination

index DI. So if we want to fill a block with a particular data then we should set destination index to the

beginning of the block and then use the STOSW instruction or the STOSB instruction and use CX to

get the required length. S_ARRAY is the location 2000 in this program.

PROGRAM -2:

Address Label Opcode Mnemonic Operand Comments

1000 C7,C1,00,FF MOV CX,00FF 00FF move to CX

1004 C7,C7,00,20 MOV DI,2000 Get 2000 in DI

1008 C7,C0, MOV AL, Data Move To AL

100C FC CLD - Clear

100D L FE STOSB - Store byte value

100E E2,FD LOOP L (100D) Continue

1010 F4 HLT - Stop

EC8681 Microprocessor and Microcontroller Laboratory

20

PROGRAM -3:

INPUT :

Input [AX]

OUTPUT :

Address Data

2000

2001

2002

2003

. .

20FE

EC8681 Microprocessor and Microcontroller Laboratory

21

PROGRAM 3 :

Address Label Opcode Mnemonic Operand Comments

1000 C7,C1,00,FF MOV CX,00FF 00FF move to CX

1004 C7,C7,00,20 MOV DI,2000 Get address in DI

1008 C7,C0, MOV AX, Data Get the data

100C FC CLD - Clear Direction Flag

100D L FD STOSW - Store the word

100E E2,FD
LOOP L (100D)

Continue till string is

stored

1010 F4 HLT - Stop

PROCEDURE:

1. Enter the program from location 1000

2. Fill FF locations as stated above with particular data.

3. Execute the program.

4. Check if the contents are duplicated to another 255 locations using the compare command

in the kit

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

22

Date :

Ex.No. : 4

SORTING AN ARRAY USING 8086

AIM:

To write an assembly language program to sort an array of data in ascending and descending order

using 8086 microprocessor kit.

APPARATUS REQUIRED:

8086 kit

ALGORITHM:

1. Set SI register as pointer for array.

2. Set CL register as count for N-1 repetitions Initialize array pointer.

3. Set CH as count for N – 1 comparison.

4. Increment the array in AL register.

5. Get the element of array in AL register.

6. Increment the array in pointer.

7. Compare the next element of array in AL

8. Check carry flag, if carry is set then go to step – 12, otherwise go to next step

9. Exchange the content of memory pointed by SI and the content of previous memory

location.[for this exchange AL and memory pointed by SI and then exchange AL and memory

pointed by SI – 1.

PROGRAM

Address Label Opcode Mnemonics Operand Comments

1000

C7 C6 00 11
MOV

SI,1100
Set SI register as pointer

for array

1004

8A 0C MOV CL,[SI]
Set CL as count for N-
1repletion’s

1006 FE C9 DEC CL Decrement CL

1008 @ C7 C6 00 11 MOV SI,1100 Initialize pointer

100C

8A 2C MOV CH,[SI]
Set CH as count for N-1

comparisons

100E FE CD DEC CH Decrement CH

EC8681 Microprocessor and Microcontroller Laboratory

23

OBSERVATION:

ASCENDING ORDER :

Input Output

Address Data Address Data

1100 (Number of elements)

1101

1101

1102

1102

1103

1103

1104

1104

1105

1105

EC8681 Microprocessor and Microcontroller Laboratory

24

1010
46 INC SI Increment SI

1011 % 8A 0A MOV AL,[SI] Get an element of array in

AL register

1013 46 INC SI Increment SI

1014 3A 0A CMP AL,[SI] Compare with next element

of array in memory

1016 72 00 JC # (1018) If AL is less than memory,
then go to #

1008 # FE CD DEC CH Decrement count for

comparisons

101A 75 F5 JNZ % (1011) Repeat comparison until CH
count is zero

101C FE C9 DEC CL Decrement the count for

repeat ions

101E

75 E8

JNZ @ (1008)
Repeat N-1 comparisons

until CL count is zero

1020 F4 HLT - Stop

EC8681 Microprocessor and Microcontroller Laboratory

25

OBSERVATION:

DESCENDING ORDER :

Input Output

Address Data Address Data

1100 (No. of elements)

1101

1101

1102

1102

1103

1103

1104

1104

1105

1105

EC8681 Microprocessor and Microcontroller Laboratory

26

PROGRAM

Address Label Opcode Mnemonics Operand Comments

1000

C7 C6 00 11
MOV

SI,1100
Set SI register as pointer for

array

1004

8A 0C MOV CL,[SI]
Set CL as count for N-1
repetitions

1006 FE C9 DEC CL Decrement CL

1008 @ C7 C6 00 11 MOV SI,1100 Initialize pointer

100C

8A 2C MOV CH,[SI]
Set CH as count for nN-1

comparisons

100E FE CD DEC CH Decrement CH

1010 46 INC SI Increment SI

1011 % 8A 04 MOV AL,[SI]
Get an element of array in AL

register

1013 46 INC SI Increment SI

1014

3A 04 CMP AL,[SI]
Compare with next element of
array in memory

1016

73 05 JNC # (101D)
If AL is not less than memory,
then go to #

1018

86 04

XCHG

AL,[SI]
If AL is less than memory then

exchange the content of
memory pointed by SI

101A

86 44 FF

XCHG

AL,[SI-1]

If AL is less than memory then

exchange the content of
memory pointed by previous
memory location

101D # FE CD DEC CH CH
Decrement count for
comparisons

101F

75 0F JNZ % (1011)
Repeat comparison until CH

count is zero

1021

FE C9 DEC CL
Decrement the count for

repetitions

1023

75 E3 JNZ @ (1008)
Repeat N-1 comparisons until
CL count is zero

1025 F4 HLT - Stop

RESULT :

EC8681 Microprocessor and Microcontroller Laboratory

27

Date :

Ex. No.:

AIM:

LARGEST & SMALLEST NUMBER IN AN ARRAY USING 8086

To find the largest and smallest number in a given array using 8086 microprocessor.

APPARATUS REQUIRED:

8086 kit

PROGRAM

 LARGEST NUMBER IN A DATA ARRAY:

Address Label Opcode Mnemonics Operand Comments

1000 C7 C60030 MOV SI,2000 Get the address in SI

1004

8B 0C MOV CX,[SI]
Content of 2000 mov

to CX

1006 C7 C0 00 00 MOV AX, 0000 Clear AX

100A BACK 46 INC SI
Increment the

address

100B

46 INC SI
Increment the
address

100C 3B 04 CMP AX,[SI] Compare contents

100E

73 02 JAE GO
Check above or
below

1010

8B 04 MOV AX,[SI]
Content of 2000 mov
to AX

1012 GO E2 F6 DEC CX Jump

1013

75 F5 JNZ BACK
Jump if CX is not

zero

1015

89 06 51 30 MOV [2051],AX
Store the result in
2051

1019 F4 HLT - Stop

EC8681 Microprocessor and Microcontroller Laboratory

28

OBSERVATION

Address Input Data

2000 (No. of 16 bit

numbers in the array)

2001(No. of 16 bit
numbers in the array)

2002

2003

2004

2005

2006

2007

2008

2009

200A

200B

200C

200D

OUTPUT FOR LARGEST NUMBER

Address Data

2051

2052

EC8681 Microprocessor and Microcontroller Laboratory

29

PROGRAM

 SMALLEST NUMBER IN A DATA ARRAY:

Address Label Opcode Mnemonics Operand Comments

1000 C7 C6 00 30 MOV SI,2000 Get the address in SI

1004

8B 0C MOV CX,[SI]
Content of 2000 move to

CX

1006 C7 C0 99 99 MOV AX, 9999 Clear AX

100A BACK 46 INC SI Increment the address

100B 46 INC SI Increment the address

100C 3B 04 CMP AX,[SI] Compare contents

100E 72 02 JB GO Check above or below

1010

8B 04 MOV AX,[SI]
Content of [SI] moved to
AX

1012 GO 49 DEC CX

Decrement Count

1013 75 F5 JNZ BACK Jump if CX is not zero

1015 89 06 51 30 MOV [2051],AX Store the result in 2051

1019 F4 HLT - Stop

EC8681 Microprocessor and Microcontroller Laboratory

30

OBSERVATION

Address Input Data

2000 (No. of 16 bit

numbers in the array)

2001(No. of 16 bit
numbers in the array)

2002

2003

2004

2005

2006

2007

2008

2009

200A

200B

200C

200D

OUTPUT FOR SMALLEST NUMBER

Address Data

2051

2052

EC8681 Microprocessor and Microcontroller Laboratory

31

RESULT :

EC8681 Microprocessor and Microcontroller Laboratory

32

Date :

Ex.No.:

AIM:

ARITHMETIC AND LOGICAL OPERATIONS USING MASM SOFTWARE

To write ALP for Arithmetic and logic operations using MASAM.

SOFTWARE REQUIRED:

Pc with windows (95/98/XP/NT/2000)

MASM Software.

PROCEDURE :

1. Go to command prompt and type ‘edit’

2. In the edit window type the program.

3. Save the program as ‘add.asm’

4. Exit from edit window and in the command prompt following operations are performed:

D:/8086>masm add.asm (press enter)

D:/8086> link add.obj (press enter)

D:/8086> debug add.exe (press enter)

- e 2000 01 02 08 05 (press enter)

- g = 1000 (press enter)

Program terminated correctly

PROGRAM:

16-BIT ADDITION

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov cl,00h

Mov ax,[si]

Mov bx,[si+2]

EC8681 Microprocessor and Microcontroller Laboratory

33

Add ax,bx

Addition:

Input:

-e 2000

Output:

-e 2004

EC8681 Microprocessor and Microcontroller Laboratory

34

Jnc L1

Inc cl

L1: Mov [si+4], ax

Mov [si+6], cl

Mov ah,4ch

Int 21h

Code ends

End

16-BIT SUBTRACTION

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov cl,00h

Mov ax, [si]

Mov bx,[si+2]

Sub ax,bx

Jnc L1

Inc cl

Not ax

Add ax,0001h

L1: Mov [si+4], ax

Mov [si+6], cl

Mov ah,4ch

Int 21h

Code ends

End

EC8681 Microprocessor and Microcontroller Laboratory

35

Subtraction:

Input:

-e 2000

Output:

-e 2004

EC8681 Microprocessor and Microcontroller Laboratory

36

16-BIT MULTIPLICATION

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov ax,[si]

Mov bx,[si+2]

Mul bx

Mov [si+4], ax

Mov [si+6], dx

Mov ah,4ch

Int 21h

Code ends

End

16- BIT DIVISION

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov ax,[si]

Mov bx,[si+2]

Div bx

Mov [si+4], ax

Mov [si+6], dx

Mov ah,4ch

Int 21h

Code ends

EC8681 Microprocessor and Microcontroller Laboratory

37

End

Multiplication:

Input :

-e 2000

Output:

-e 2004

Division:

Input :

-e 2000

Output:

-e 2004

-e 2006

Logical OR:

Output:

-e 2000

Logical AND:

Output:

-e 2000

EC8681 Microprocessor and Microcontroller Laboratory

38

LOGICAL AND:

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov al, 07h

Mov bl, 02h

And al, bl

Mov [si],al

Int 21h

Code ends

End

LOGICAL OR:

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov al, 07h

Mov bl, 02h

Or al, bl

Mov [si],al

Int 21h

Code ends

End

LOGICAL XOR:

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov al, 07h

Mov bl, 02h

Xor al, bl

Mov [si],al

Int 21h

Code ends

End

EC8681 Microprocessor and Microcontroller Laboratory

39

Logical XOR:

Output:

-e 2000

Logical NOT:

Output:

-e 2000

EC8681 Microprocessor and Microcontroller Laboratory

40

NOT OPERATION:

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov Al, 07h

Not Al

Mov [si],Al

Int 21h

Code ends

End

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

41

Date :

Ex.No.

AIM:

BIOS / DOS CALL - STRING MANIPULATION

To perform string manipulation and BIOS / DOS call using MASM software.

APPARATUS REQUIRED:

PC loaded with MASM software.

PROCEDURE:

1. Go to command prompt and type ‘edit’

2. In the edit window type the program.

3. Save the program as ‘str.asm’

4. Exit from edit window and in the command prompt following operations are performed:

D:/8086> masm str.asm (press enter 3 times)

D:/8086> link str.obj (press enter 3 times)

D:/8086> debug str.exe (press enter)

- f 2000 20ff 45 (any data) (press enter)

- g = 1000 (press enter)

Program terminated correctly

PROGRAM :

Code segment

Assume CS : code, DS: code

Org 1000h

Mov si, 2000h

Mov cx, 00ffh

Mov di, 3000h

Move: movsb

Loop Move

Mov ah, 4ch

Int 21h

Code ends

End

EC8681 Microprocessor and Microcontroller Laboratory

42

Output:

-e 3000 to 30FF

RESULT :

EC8681 Microprocessor and Microcontroller Laboratory

43

Date :

Ex.No.:

AIM :

BIOS / DOS CALL – SEARCH AN ELEMENT

To search an element in an array and BIOS / DOS call using MASM software.

APPARATUS REQUIRED:

PC loaded with MASM software.

PROCEDURE :

1. Go to command prompt and type ‘edit’

2. In the edit window type the program.

3. Save the program as ‘search.asm’

4. Exit from edit window and in the command prompt following operations are performed:

D:/8086>masm search.asm (press enter)

D:/8086> link search.obj (press enter)

D:/8086> debug search.exe (press enter)

- e 2000 01 02 08 05 08 (press enter)

- g = 1000 (press enter)

Program terminated correctly

PROGRAM:

Code segment

Assume CS:code, DS: code

Org 1000h

Mov di, 2100h

Mov bx, 2000h

Mov dh, 05h (No. of elements in the array)

Mov ch, 08h (Data which needs to be searched)

Mov cl,00h

EC8681 Microprocessor and Microcontroller Laboratory

44

Output:

-e 2100

EC8681 Microprocessor and Microcontroller Laboratory

45

L2: mov ax,[bx]

Cmp al, ch

Jnz L1

Inc cl

L1: inc bx

Dec dh

Jnz L2

Mov [di], cl

Mov ah,4ch

Int 21h

Code ends

End

RESULT :

EC8681 Microprocessor and Microcontroller Laboratory

46

Date :

Ex.No :7
TRAFFIC LIGHT CONTROLLER USING 8086

AIM:

The objective of this experiment is to simulate a traffic lights system.

APPARATUS REQUIRED:

8086 kit and Interfacing card

THEORY:

Traffic light control using microcontroller 8051 can be done easily with parallel ports. The port pins

can be connected to each light, LED, or group of LEDs through a proper driver circuit. The data in

parallel ports can be changed using the program, for turning on and off the lights. The port pins of Port

A and Port B are used. The least significant three bits of Port A are used for the west direction. The

Port A pins 3,4,5 are used for are used for the north direction. Similarly, the least significant bits of

Port B are used for the lights in east direction and pins 3,4,5 are used for the south direction.

PROGRAM

Address Label Opcode Mnemonics

1000 START: C7 C6 00 12 MOV SI, 1200H

1004 C7 C1 04 00 MOV CX, 0004H

1008 8A 0A MOV AL,[SI]

100A C7 C2 83 00 MOV DX, 0083H [Control

Word]

100E EE OUT DX, AL

100F 46 INC SI

1010 NEXT: 8A 04 MOV AL,[SI]

1012 C7 C2 80 00 MOV DX, 0080H [PA]

1016 EE OUT DX,AL

1017 46 INC SI

1018 8A 04 MOV AL,[SI]

101A C7 C2 81 00 MOV DX, 0081H [PB]

EC8681 Microprocessor and Microcontroller Laboratory

47

EC8681 Microprocessor and Microcontroller Laboratory

48

101E EE OUT DX,AL

101F E8 DE 00 CALL DELAY 1

1022 46 INC SI

1023 8A 04 MOV AL,[SI]

1025 C7 C2 80 00 MOV DX,0080H

1029 EE OUT DX,AL

102A 46 INC SI

102B 8A 04 MOV AL,[SI]

102D C7 C2 81 00 MOV DX,0081H

1031 EE OUT DX,AL

1032 E8 1B 01 CALL DELAY 2

1035 46 INC SI

1036 49 DEC CX

1037 75 D7 JNZ NEXT

1039 E9 C4 FF JMP START

1100 DELAY 1: C7 C2 14 00 MOV DX,0014H

1104 % C7 C3 FF FF MOV BX,FFFF

1108 # 90 NOP

1109 90 NOP

111A 90 NOP

111B 90 NOP

110C 4B DEC BX

110D 75 F9 JNZ #

110F 4A DEC DX

1110 75 F2 JNZ %

1112 C3 RET

1150 DELAY 2: C7 C2 05 00 MOV DX,0005H

1154 @ C7 C3 FF FF MOV BX,FFFF

1158 $ 90 NOP

EC8681 Microprocessor and Microcontroller Laboratory

49

Data for port pins for traffic light control

Sequence SG

PB.5

SY

PB.4

SR

PB.3

EG

PB.2

EY

PB.1

ER

PB.0

NG

PA.5

NY

PA.4

NR

PA.3

WG

PA.2

WY

PA.1

WR

PA.0

PA

Data

PB

Data

Sequence

1
0 0 1 0 0 1 0 0 1 1 0 0 0CH 09H

0 0 1 0 0 1 0 1 0 1 0 0 14H 09H

Sequence

2

0 0 1 0 0 1 1 0 0 0 0 1 21H 09H

0 0 1 0 1 0 1 0 0 0 0 1 21H 0AH

Sequence

3

0 0 1 1 0 0 0 0 1 0 0 1 09H 0CH

0 1 0 1 0 0 0 0 1 0 0 1 09H 14H

Sequence

4
1 0 0 0 0 0 0 1 1 0 0 1 09H 21H

1 0 0 0 0 1 0 0 1 0 1 0 0AH 21H

Software: Control Word: For initialization of 8255.

Ports/control Register Address lines

A7 A6 A5 A4 A3 A2 A1 A0

Address

Port A

Port B

Port C

Control Register

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1

1 0 0 0 0 0 1 0

1 0 0 0 0 0 1 1

80H

81H

82H

83H

BSR/IO MODE A PA PCH MODE B PB PCL

1 0 0 0 X 0 0 X

Control Word

EC8681 Microprocessor and Microcontroller Laboratory

50

1159 90 NOP

115A 90 NOP

115B 90 NOP

115C 75 FA JNZ $

115E 4A DEC DX

115F 75 F3 JNZ @

1161 C3 RET

LOOK UP TABLE

Address Opcode

1200 80H

1201 0CH,09H,14H,09H (WEST WAY)

1205 21H,09H,21H,0AH (NORTH WAY)

1209 09H,0CH,09H,14H (EAST WAY)

120D 09H,21H,0AH,21H (SOUTH WAY)

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

51

Date :

Ex.No. : 8

STEPPER MOTOR INTERFACING WITH 8086

AIM:

To interface a stepper motor with 8086 microprocessor, operate it in clockwise and

anticlockwise direction and control its speed of operation.

THEORY:

A motor in which the rotor is able to assume only discrete stationary angular position is a stepper

motor. The rotary motion occurs in a step-wise manner from one equilibrium position to the next.

Stepper Motors are used very wisely in position control systems like printers, disk drives, process

control machine tools, etc.

The basic two-phase stepper motor consists of two pairs of stator poles. Each of the four poles

has its own winding. The excitation of any one winding generates a North Pole. A South Pole gets

induced at the diametrically opposite side. The rotor magnetic system has two end faces. It is a

permanent magnet with one face as South Pole and the other as North Pole.

The Stepper Motor windings A1, A2, B1, B2 are cyclically excited with a DC current to run the

motor in clockwise direction. By reversing the phase sequence as A1, B2, A2, B1, anticlockwise

stepping can be obtained.

2- PHASE SWITCHING SCHEME:

In this scheme, any two adjacent stator windings are energized. The switching scheme is

shown in the table. This scheme produces more torque.

ADDRESS DECODING LOGIC:

The 74138 chip is used for generating the address decoding logic to generate the device select

pulses; CS1 & CS2 for selecting the IC 74175.The 74175 latches the data bus to the stepper motor

driving circuitry.

EC8681 Microprocessor and Microcontroller Laboratory

52

Switching scheme of stepper motor :

Anticlockwise

Clockwise

STEP A1 A2 B1 B2 DATA STEP A1 A2 B1 B2 DATA

1 1 0 0 1 09h 1 1 0 1 0 0Ah

2 0 1 0 1 05h 2 0 1 1 0 06h

3 0 1 1 0 06h 3 0 1 0 1 05h

4 1 0 1 0 0Ah 4 1 0 0 1 09h

EC8681 Microprocessor and Microcontroller Laboratory

53

Stepper Motor requires logic signals of relatively high power. Therefore, the interface circuitry

that generates the driving pulses uses silicon Darlington pair transistors. The inputs for the interface

circuit are TTL pulses generated under software control using the Microcontroller Kit. The TTL level

of pulse sequence from the data bus is translated to high voltage output pulses using a buffer 7407 with

open collector.

PROCEDURE:

Enter the above program starting from location 1018.and execute the same. The stepper motor

rotates. Varying the count at R4 and R5 can vary the speed. Entering the data in the look-up TABLE in

the reverse order can vary direction of rotation.

PROGRAM:

Address Label Mnemonics Operand Comments

1000

START

MOV

DI,1018
Load the start address of

switching scheme data TABLE
into DI register

1004 MOV CL,04 Load the count in CL

1007 # MOV AL,[DI]
Load the number in TABLE
into AL

1009

OUT C0,AL
Send the value in A to stepper

Motor port address

100B

MOV

DX,1010

Delay loop to cause a specific
amount of time delay before

next data item is sent to the
Motor

100F @ DEC DX
Decrement the Dx value for

delay

1010

JNZ @ (100F) Go to 100F till DX=0

EC8681 Microprocessor and Microcontroller Laboratory

54

Stepper motor Stepping Sequence Look up table :

Address
Data

(Clockwise Rotation)

Data

(Anti- Clockwise Rotation)

1018 09 0A

1019 05 06

101A 06 05

101B 0A 09

EC8681 Microprocessor and Microcontroller Laboratory

55

1012

INC

DI

Increment the DI value

to point out to the next

value

1013 LOOP # (1007) Repeat the process

1015

JMP

1000
Jump to starting address
and continue the
processs

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

56

Date :

Ex.No :

AIM:

INTERFACING 8279 WITH 8086

To display Rolling message in display using 8279 programmable keyboard/display controller by interfacing

it with 8086.

APPARATUS REQUIRED:

S.No Apparatus Quantity

1 Microprocessor kit-8086 1

2 Keyboard display Interface-8279 1

3 Connecting cable -

DESCRIPTION:

The INTEL 8279 is specially developed for interfacing keyboard and display devices to

8085/8086/8088 microprocessor based system.

The important features of 8279 are,

 Simultaneous keyboard and display operations.

 Scanned keyboard mode.

 Scanned sensor mode.

 8-character keyboard FIFO.

 16-character display.

 Right or left entry 1 6-byte display RAM.

 Programmable scan timing.

DISPLAY SECTION:

 The display section has eight output lines divided into two groups A0-A3 and B0-B3.

 The output lines can be used either as a single group of eight lines or as two groups of our lines, in

conjunction with the scan lines for a multiplexed display.

 The output lines are connected to the anodes through driver transistor in case of common cathode 7-

segment LEDs.

 The cathodes are connected to scan lines through driver transistors.

EC8681 Microprocessor and Microcontroller Laboratory

57

Display mode setup command: [10]

0 0 0 D D K K K

0 0 0 1 0 0 0 0

Clear Display Command: [CC]

1 1 0 CD2 CD1 CD0 CF CA

1 1 0 0 1 1 0 0

Display RAM Command: [90]

1 0 0 AI A A A A

1 0 0 1 0 0 0 0

Seven segment code for the message :

Character d c b a Dp g f e Seven segment code

H 1 0 0 1 1 0 0 0 98

E 0 1 1 0 1 0 0 0 68

L 0 1 1 1 1 1 0 0 7C

P 1 1 0 0 1 0 0 0 C8

U 0 0 0 1 1 1 0 0 1C

S 0 0 1 0 1 0 0 1 29

EC8681 Microprocessor and Microcontroller Laboratory

58

 The display can be blanked by BD (low) line.

 The display section consists of 16 x 8 display RAM. The CPU can read from or write into any

location of the display RAM.

In common anode type seven segment display, 0 is used for a segment to glow and 1 for a

segment to remain in off condition.

ALGORITHM :

1. Store the look up table which contains the common anode seven segment code for the

message ‘HELP US’ from memory location 1200.

2. Load the number of characters to be displayed in CX reg.

3. Move display mode set up command to acc. And then load it in command reg.

4. Move clear command to acc. and then load it in command reg.

5. Move display RAM command to acc. And then load it in command reg.

6. Then move common anode seven segment codes one by one for the character to be displayed

to accumulator from memory and then load it in data reg.

7. Call delay subroutine between each code.

8. Repeat step 2 to 7 to get continuous display of message ‘HELP US’.

PROGRAM -1 :

To Display ‘A’ in the first digit:

Address Label Opcode Mnemonics

1000 START C6C000 MOV AL,00

1003 E6C2 OUT C2,AL

1005 C6C0CC MOV AX,00CC

1008 E6C2 OUT C2,AL

100A C6C090 MOV AL,90

100D E6C0 OUT C2,AL

100F C6C088 MOV AL,88(Data)

1012 E6C0 OUT C0,AL

1014 C6C0FF MOV AX,00FF

1017 C7C10500 MOV CX,0005

101B NEXT E6C0 OUT C0,AL

101D E2FC LOOP NEXT

101F F4 HLT

EC8681 Microprocessor and Microcontroller Laboratory

59

OUTPUT:

EC8681 Microprocessor and Microcontroller Laboratory

60

PROGRAM – 2 :

ROLLING DISPLAY:

Address Label Opcode Mnemonics

1000 START C7 C6 00 12 MOV SI,1200

1004 C7 C1 0F 00 MOV CX,000F

1008 C6 C0 10 MOV AL,10

100B E6 C2 OUT C2,AL

100D C6 C0 CC MOV AL,CC

1010 E6 C2 OUT C2,AL

1012 C6 C0 90 MOV AL,90

1015 E6 C2 OUT C2,AL

1017 NEXT 8A 04 MOV AL,[SI]

1019 E6 C0 OUT C0,AL

101B E8 E2 04 CALL DELAY

101E 46 INC SI

101F E2 F6 LOOP NEXT

1021 E9 DC FF JMP START

1500 DELAY C7 C2 FF A0 MOV DX,0A0FF

1504 LOOP1 4A DEC DX

1505 75 FD JNZ LOOP1

1507 C3 RET

LOOK UP TABLE:

1200 FF FF FF FF

1204 FF FF FF FF

1208 98 68 7C C8

120C FF 1C 29 FF

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

61

Mode Instruction Word Format: (4Eh)

S2 S1 EP PEN L2 L1 B2 B1

=1Even =1 Parity Char. Length Baud rate factor

S2 S1 Stop bits parity enable 0 0 5 bits 0 0 Sync. Mode
0 0 Invalid =0 Odd 0 1 6 bits 0 1 1xAsync.

0 1 1 parity 1 0 7 bits 1 0 16xAsync.

1 0 1½ 1 1 8 bits 1 1 64xAsync.

1 1 2

E 1 0 0 1 1 1 0

Command Instruction Word Format: (37h)

EH IR RTS ER SBRK RxE DTR TxEN

0 0 1 1 0 1 1 1

EH: Enter Hunt mode (No effect in Async.) SBRK: Send Break Character

IR: Internal Reset RxE : Receive Enable

RTS : Request To Send DTR : Data Terminal Ready

ER : Error Reset TxEN : Transmit Enable

8254 Timer’s registers address USART 8251’s registers address

8254 Timer’s registers address USART 8251’s registers address
Register Address Register Address

Control Register CE Control Register C2

Data Register C8 Data Register C0

Register Address

Control Register CE

Data Register C8

Register Address

Control Register C2

Data Register C0

EC8681 Microprocessor and Microcontroller Laboratory

62

Date :

Ex.No.:

AIM:

INTERFACING 8251 WITH 8086

To initialize the USART (Universal Synchronous Asynchronous Receiver Transmitter)

8251 and check the serial data transmission and reception of character with 8086.

APPARATUS REQUIRED:

S.No Apparatus Quantity

1 Microprocessor kit 8086 1

2 Interface kit 8251 1

3 Connecting cable -

DESCRIPTION:

USART-INTEL 8251A:

1. The 8251A is a programmable serial communication interface chip designed for synchronous

and asynchronous serial data communication.

2. It supports the serial transmission of data.

3. It is packed in a 28 pin DIP.

ALGORITHM :

1. Clock for serial transmission and reception is generated using Intel’s Programmable Interval

Timer 8254, which is made to function in mode 3 (Square wave generator). For that first the

control word for 8254 (36H) is loaded in its control register. Then count value (0AH) is loaded

in counter 0’s count register.

2. Mode instruction word for 8251 (4EH) is loaded in its control register.

3. Then command instruction word (37H) is loaded in control register.

4. Data to be transmitted is loaded in 8251’s data register.

5. In program 2 get the data in data register to check whether the data is received at the

receiver side properly.

6. Store the received data in accumulator in memory Location 1250.

EC8681 Microprocessor and Microcontroller Laboratory

63

OUTPUT:

Transmitted Data Received Data

 Address

Data

EC8681 Microprocessor and Microcontroller Laboratory

64

PROGRAM (TX):

Address Opcode Mnemonic Operand

1000 B0 36 MOV AL, 36

1002 E6 CE OUT CE,AL

1004 B0 10 MOV AL,OA

1006 E6 C8 OUT C8,AL

1008 B0 00 MOV AL,00

100A E6 C8 OUT C8,AL

100C B0 4E MOV AL,4E

100E E6 C2 OUT C2,AL

1010 B0 37 MOV AL,37

1012 E6 C2 OUT C2,AL

1014 C6 C0

(DATA)
MOV AL, DATA

1016 E6 C0 OUT C0,AL

1018 F4 HLT -

PROGRAM (RX):

Address Opcode Mnemonic Operand

1200 E4 C0 IN AL,C0

1202 BB 50 12 MOV BX,1250

1205 88 07 MOV [BX],AL

1207 F4 HLT -

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

65

EC8681 Microprocessor and Microcontroller Laboratory

66

Date :

Ex.No. :

AIM:

INTERFACING 8255 WITH 8086

To interface programmable peripheral interface 8255 with 8085 and study its characteristics in

mode 0.

APPARATUS REQUIRED:

8086 p kit, 8255Interface board and Interface card.

THEORY:

The 8255 Programmable Peripheral Interface (PPI) is a very popular and versatile input /

output chip that are easily configured to function in several different configurations. This chip

allows to do both digital input and output (DIO) with PC. The functional configuration of the 8255A

is programmed by the systems software so that normally no external logic is necessary to interface

peripheral devices or structures. There are 3-stable bi-directional 8-bit buffer is used to interface

the 8255A to the systems data bus. Data is transmitted or received by the buffer upon execution of

input or output instructions by the CPU. Read/Write and Control Logic block manages all the

Internal and External transfers of both Data and Control or Status words.

 I/O MODES:

MODE 0 – SIMPLE I/O MODE:

This mode provides simple I/O operations for each of the three ports and is suitable for

synchronous data transfer. In this mode all the ports can be configured either as input or output port.

Let us initialize port A as input port and port B as output port

EC8681 Microprocessor and Microcontroller Laboratory

67

I/O MODES:

Control Word:

EC8681 Microprocessor and Microcontroller Laboratory

68

PROGRAM :

To initialize port A as an input port in Mode -0 and to input the data set by the SPDT switches

through port A, output the same to LEDs connected to Port B and store the data at RAM location 1100.

Address Opcodes Mnemonics Operand Comments

1000 B0 90 MOV AL, 90
Initialize port A as Input

port in mode 0.

1002 E6 C6 OUT C6,AL Send Mode Control word

1004 E4 C0 IN AL,C0 Read port A

1006 E6 C2 OUT C2,AL Send output to port B

1008 BE 00 11 MOV SI, 1100
Initialize SI register for
output address

100B 88 04 MOV [SI],AL Store output at 1100

100D F4 HLT - Stop the program

OPERATION OF 8255 IN MODE -1 :

In this mode, the ports are divided into two groups, A and B, each of which consists of an 8

bit data port and 4 bit control lines, which are used for strobed I/O data transfer. The ports can be

configured either as input or as output.

EXAMPLE FOR PORT – B AS OUTPUT PORT IN MODE - 1 :

With this configuration, the port C lines PC1 and PC2 acts as OBF and ACK signals

respectively. The given program initialize port B as output port. The control word for this is 84. Then

it writes data 45 into port B. This write operation generates WR signal to 8255. Hence at the trailing

edge of WR, the OBF signal goes low, which can be seen by the corresponding LED going off. Now,

if INT 0 switch is pressed, a ACK goes low and corresponding LED will glow.

EC8681 Microprocessor and Microcontroller Laboratory

69

OBSERVATION

MODE -0

INPUT – PORT – A SPDT switch position:

OUTPUT :

PORT B – LED Condition:

Memory Address: 1100

Data:

MODE -1

OUTPUT:

PORT B – LED Condition:

MODE - 2

INPUT – PORT – A SPDT switch position:

OUTPUT:

PORT B – LED Condition:

EC8681 Microprocessor and Microcontroller Laboratory

70

PROGRAM :

Address Opcode Mnemonics Operand Comments

1000 B0 90 MOV AL, 84
Initialize port A as Input

port in mode 0.

1002 E6 C6 OUT C6,AL Send Mode Control word

1004 B0 45 MOV AL, 45 Load data in AL

1006 E6 C2 OUT C2,AL Send output to port B

100D F4 HLT - Stop the program

OPERATION OF 8255 IN MODE -2 :

Mode 2 provides the facility of data transfer with an I/O in both directions using strobed I/O

mode. This mode is available only for Group A, that is, port A, A part from the 8-bit bidirectional port,

there are 5 control lines (PC3 – PC7), which are used for handshaking and interrupt request. Data can

be latched in both directions.

EXAMPLE FOR PORT – A AS INPUT PORT IN MODE - 2 :

In mode -2, port A acts as a bidirectional I/O. In this mode, lines PC4 and PC5 of port C as STB

and IBF signals respectively. Configuring port A as input port and pins PC6 and PC7 acts as ACK and

OBF respectively configuring port A as output port.

PROGRAM :

Address Opcodes Mnemonics Operand Comments

1000 B0 90 MOV AL, C0
Initialize port A as Input port

in mode 0.

1002 E6 C6 OUT C6,AL Send Mode Control word

1004 F4 HLT - Stop the program

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

71

FLOW CHART: ADDTION

OUTPUT:

Address Data

Input

-

(Data 1)

(Data 2)

Output

4150

(sum)

EC8681 Microprocessor and Microcontroller Laboratory

72

Date :

Ex.No. :

ARITHEMETIC OPERATIONS USING 8051

AIM:

To write an assembly language program to perform

1. Addition

2. Subtraction

3. Multiplication

4. Division

Using 8051 microcontroller.

APPARATUS REQUIRED:

Microcontroller kit-8051

ALGORITHM: ADDITION

1. Start the program.

2. Get the 1st and 2nd value.

3. Add the 2 values.

4. Store the result in a memory location.

5. Stop the program.

PROGRAM:

Address Label Opcode Mnemonics Operand
Comments

4100 E4 CLR A Clear A register

4101
04 MOV A,#data1

Get immediate data

Of register A

4103 03 ADD A,#data2 Add with data 1

4105 90,41,50 MOV DPTR,#4150 Initialize data pointer

4108 F0 MOVX @DPTR,A Store the results in DPTR

4109 Here 80,FE SJMP Here (4109) Loop is terminated

EC8681 Microprocessor and Microcontroller Laboratory

73

FLOW CHART: SUBTRACTION

OUTPUT

 Address Data

Input

-

(data 1)

(data 2)

Outpu

T

5500H

(difference)

EC8681 Microprocessor and Microcontroller Laboratory

74

ALGORITHM: SUBTRACTION

1. Start the program

2. Get the 1st and second value.

3. Subtract the two values.

4. Store the results in the memory location.

5. Stop the program

PROGRAM:

Address Label Opcode Mnemonics Operand Comments

5200 E4 CLR A Clear A register

5201 74 06
MOV

A,#data1 Get minuend value in A
register

5203 94 05
SUBB

A,#data2 Subtract data 2 from

minuend

5205 90 55 00 MOV DPTR,#5500 Initialize data pointer

5208 F0
MOVX

@DPTR,A Store different pointer in
data

5209 Here 80,FE SJMP Here (5209) Loop is terminated

EC8681 Microprocessor and Microcontroller Laboratory

75

FLOW CHART: MULTIPLICATION

OUTPUT:

Address Data

Input

-
(data1)

(data2)

Output

4500H

4501H

(Lower Byte)

(Higher Byte)

EC8681 Microprocessor and Microcontroller Laboratory

76

ALGORITHM: MULTIPLICATION

1. Start the program

2. Get the first and second value

3. Divide the two values

4. Store the result in data pointer

5. Stop the program

Address Label Opcode Mnemonics Operand Comments

4300

74 02 MOV
A,#data1 Immediate data1 is moved to

A

4302 75 F0 03 MOV B,#data2 Data2 is moved to B

4305 A4 MUL AB Multiply A and B

4306

90 45 00 MOV
DPTR,#4500 Move content from 4500 to

DPTR

4309

F0 MOVX
@DPTR,A Move accumulator content to

DPTR

430A A3 INC DPTR Increment data pointer value

430B E5 F0 MOV A,B Move contents of B to A

430D F0 MOVX @DPTR,A Move A to DPTR

430E Here 80 F5 SJMP Here (430E) Loop is terminated

EC8681 Microprocessor and Microcontroller Laboratory

77

FLOW CHART: DIVISION

OUTPUT:

 Address Data

Input

-

(data 1)

(data 2)

Output

4500H

4501H

(Quotient)

(Remainder)

EC8681 Microprocessor and Microcontroller Laboratory

78

ALGORITHM: DIVISION

1. Start the program

2. Get the first and second value

3. Divide the two values

4. Store the result in data pointer

5. Stop the program

PROGRAM:

Address Label Opcode Mnemonics Operand Comments

4400 74 04 MOV A,#data1 Data1 is moved to A

4402 75 F0 02 MOV B,#data2 Data2 is moved to B

4405 84 DIV AB Divide A and B

4406 90 45 00
MOV DPTR,#4500

Move content from 4500

to DPTR

4409 F0 MOVX @DPTR,A Move A to DPTR

440A A3 INC DPTR Increment DPTR value

440B E5 F0 MOV A,B Move contents of B to A

440D F0 MOVX @DPTR,A Store the result in DPTR

440E Here 80 FE SJMP Here (440E) Loop is terminated

Particulars Max. marks Marks awarded

Algorithm 20

Program Coding 40

Execution 20

Output 10

Viva Voce 10

RESULT:

EC8681 Microprocessor and Microcontroller Laboratory

79

FLOW CHART: LOGICAL OR

OUTPUT:

 Address Data

Input

-

(data)

(data)

Output

4150H

(logical OR)

EC8681 Microprocessor and Microcontroller Laboratory

80

Date :

Ex.No. :

AIM:

LOGICAL AND & OR OPERATIONS USING 8051

To write an assembly language program for logical operations using 8051 microprocessor.

APPARATUS REQUIRED:

Microcontroller kit-8051

ALGORITHM:

1. Start the program

2. Get the 1st data.

3. Perform OR of 1st and the 2 nd data.

4. Store the results in the memory location.

5. Stop the program

PROGRAM:

LOGICAL OR OPERATION

Address Label
Opcode

Mnemonics Operand Comments

5000 E4 CLR A Clear A register

5001 74 MOV A, #data1 Move data1 to A

5003 54
ORL A,#data2

Perform OR with
data2

5005 90
MOV

DPTR,
#4150

Initialize DPTR

5008 F0
MOVX @DPTR,A

Store result in DPTR

5009 Here 80 SJMP Here(5009) Loop is terminated

EC8681 Microprocessor and Microcontroller Laboratory

81

FLOW CHART: LOGICAL AND OPERATION

OUTPUT:

 Address Data

Input

-

Data 1:

Data 2:

Output

4150H

EC8681 Microprocessor and Microcontroller Laboratory

82

PROGRAM:

 LOGICAL AND OPERATION

Address Label
Opcode

Mnemonics Operand Comments

4100 74 MOV A, #data1 Move data1 to A register

4102 74 MOV A, #data2 Move data2 to B register

4105 72 AB ANL A,B ANL A with B

4107 F0

MOV

DPTR,#4150

Move the address 4150 to

DPTR

410A F0

MOVX

@DPTR,A
Store result in DPTR
address

410B Here 80 FE SJMP Here (410B) Stop the program

RESULT:

	STAFF IN-CHARGE HOD
	INTERNAL EXAMINER EXTERNAL EXAMINER
	Average:
	ADDITION AND SUBTRACTION OF TWO 16 BIT NUMBERS USING 8086
	APPARATUS REQUIRED:
	ALGORITHM: (16 bit addition)
	PROGRAM
	ALGORITHM: (16 bit Subtraction)
	SUBTRACTION
	MULTIPLICATION AND DIVISION OF TWO 16 BIT NUMBERS USING 8086
	APPARATUS REQUIRED: (1)
	ALGORITHM: (16 BIT MULTIPLICATION)
	PROGRAM: MULTIPLICATION
	OBSERVATION:
	PROGRAM (1)
	RESULT:
	LOGICAL OPERATION USING 8086
	APPARATUS REQUIRED: (2)
	ALGORITHM:
	PROGRAM (2)
	OBSERVATION: (1)
	AND OPERATION
	RESULT: (1)
	Block Transfer without Overlap
	APPARATUS REQUIRED: (3)
	PROGRAM:
	RESULT: (2)
	AIM:
	APPARATUS REQUIRED: (4)
	THEORY:
	PROGRAM1:
	EXAMPLE-1:
	PROGRAM-1 :
	PROGRAM -2:
	INPUT :
	PROGRAM 3 :
	RESULT: (3)
	SORTING AN ARRAY USING 8086
	APPARATUS REQUIRED: (5)
	ALGORITHM: (1)
	PROGRAM (3)
	ASCENDING ORDER :
	DESCENDING ORDER :
	RESULT :
	AIM: (1)
	APPARATUS REQUIRED: (6)
	PROGRAM (4)
	OBSERVATION
	PROGRAM (5)
	OBSERVATION (1)
	RESULT : (1)
	AIM: (2)
	SOFTWARE REQUIRED:
	PROCEDURE :
	PROGRAM: (1)
	Addition:
	16-BIT SUBTRACTION
	Subtraction:
	16-BIT MULTIPLICATION
	16- BIT DIVISION
	Multiplication:
	Division:
	Logical OR:
	Logical AND:
	LOGICAL AND:
	LOGICAL OR:
	LOGICAL XOR:
	Logical XOR:
	Logical NOT:
	NOT OPERATION:
	RESULT: (4)

	BIOS / DOS CALL - STRING MANIPULATION
	APPARATUS REQUIRED:
	PROCEDURE:
	PROGRAM :
	Output:
	RESULT :
	AIM :
	APPARATUS REQUIRED: (1)
	PROCEDURE :
	PROGRAM:
	Output: (1)
	RESULT : (1)
	AIM:
	APPARATUS REQUIRED: (2)
	THEORY:
	PROGRAM
	Software: Control Word: For initialization of 8255.
	LOOK UP TABLE
	STEPPER MOTOR INTERFACING WITH 8086
	THEORY: (1)
	2- PHASE SWITCHING SCHEME:
	ADDRESS DECODING LOGIC:
	Switching scheme of stepper motor :
	PROCEDURE: (1)
	PROGRAM: (1)
	RESULT:
	AIM: (1)
	APPARATUS REQUIRED: (3)
	DISPLAY SECTION:
	Display mode setup command: [10]
	Display RAM Command: [90]
	ALGORITHM :
	PROGRAM -1 :
	OUTPUT:
	ROLLING DISPLAY:
	RESULT: (1)
	Command Instruction Word Format: (37h)
	8254 Timer’s registers address USART 8251’s registers address
	AIM: (2)
	APPARATUS REQUIRED: (4)
	USART-INTEL 8251A:
	ALGORITHM : (1)
	OUTPUT: (1)
	PROGRAM (RX):
	AIM: (3)
	APPARATUS REQUIRED: (5)
	THEORY: (2)
	I/O MODES:
	I/O MODES: (1)
	PROGRAM : (1)
	OPERATION OF 8255 IN MODE -1 :
	EXAMPLE FOR PORT – B AS OUTPUT PORT IN MODE - 1 :
	OBSERVATION
	MODE -1
	MODE - 2
	PROGRAM : (2)
	EXAMPLE FOR PORT – A AS INPUT PORT IN MODE - 2 :
	PROGRAM : (3)
	FLOW CHART: ADDTION
	ARITHEMETIC OPERATIONS USING 8051
	APPARATUS REQUIRED: (6)
	ALGORITHM: ADDITION
	PROGRAM: (2)
	OUTPUT
	PROGRAM: (3)
	OUTPUT: (2)
	FLOW CHART: DIVISION
	ALGORITHM: DIVISION
	PROGRAM: (4)
	FLOW CHART: LOGICAL OR
	AIM: (4)
	APPARATUS REQUIRED: (7)
	ALGORITHM:
	PROGRAM: (5)
	FLOW CHART: LOGICAL AND OPERATION
	PROGRAM: (6)
	RESULT: (2)

